November 25, 1994 / Vol. 43 / No. 46

MORBIDITY AND MORTALTY WEEKLY REPORT

845 Dengue Fever Among U.S. Military Personnel - Haiti, September-November, 1994
848 Update: Influenza Activity — United States, 1994-95 Season
849 Hypothermia-Related Deaths - North Carolina, November 1993-March 1994 Progress Toward Poliomyelitis Eradication - People's Republic of China, 1990-1994

Epidemiologic Notes and Reports

Dengue Fever Among U.S. Military Personnel Haiti, September-November, 1994

Since September 19, 1994, approximately 20,000 U.S. military personnel have been deployed to Haiti as part of Operation Uphold Democracy. To monitor the occurrence of mosquitoborne illnesses (including dengue fever [DF] and malaria) among deployed military personnel, on September 19 the U.S. Army established a surveillance system for febrile illness. Before deployment, all military personnel were instructed to take antimalarial chemoprophylaxis, either chloroquine phosphate (500 mg weekly) or doxycycline (100 mg daily). This report summarizes surveillance findings for September 19-November 4.
U.S. military personnel who developed a febrile illness with no apparent underlying cause and reported to a military outpatient clinic were referred to the U.S. Army's 28th Combat Support Hospital in Port-au-Prince for admission and evaluation, including serial blood smears for malaria, blood specimens for virus isolation, and serologic studies. Because dengue virus is the principal flavivirus known to be endemic in Haiti, a probable case of DF was defined as detection of antiflavivirus immunoglobulin M (IgM) antibodies. A confirmed case was defined as isolation of dengue virus.

During September 19-November 4, a total of 106 military personnel who had febrile illnesses were evaluated. Onset of illness began as early as 7 days after deployment, and the weekly number of cases peaked during the week ending October 22 (Figure 1). Of the 106 patients, 24 had an illness compatible with DF (i.e., fever, headache, myalgia and/or arthralgia, with or without rash). Dengue-like illnesses occurred in personnel stationed in both urban and rural areas of Haiti. One patient with probable DF had hemorrhage from a duodenal ulcer. Another had onset of fever, myalgias, and thrombocytopenia after returning to the United States.

As of November 10, preliminary laboratory results were available for 48 febrile patients. Of these, antiflavivirus IgM was detected in 11 (23\%), and dengue virus was isolated from three additional patients (dengue type 1 [one patient] and dengue type 2 [two patients]). Confirmatory testing of specimens from these patients and other febrile personnel is ongoing. Repeated malaria smears were negative for all patients.
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES / Public Health Service

Dengue - Continued

FIGURE 1. Cases of febrile illness* among U.S. military personnel, by week of onset - Haiti, September 18-November 5, 1994

*Excludes three cases for which dates of onset were unknown.

The detection of DF cases among U.S. troops in Haiti prompted the following interventions: 1) use of personal protective measures against biting insects (e.g., DEET-containing repellant and bed nets) was reemphasized among unit commanders; 2) routine ultralow volume spraying of troop areas with insecticide (i.e., malathion) was implemented; and 3) common larval habitats of Aedes aegypti mosquitoes (e.g., discarded automobile tires) were identified and eliminated where possible.
Reported by: LTC R DeFraites, LTC B Smoak, MAJ A Trofa, COL C Hoke, MAJ N Kanesa-thasan, MAJ A King, P MacArthy, J Putnak, PhD, J Burrous, Walter Reed Army Institute of Research; COL C Oster, COL R Redfield, LTC N Aronson, MAJ M Brown, MAJ J Fishbain, Walter Reed Army Medical Center, Washington, DC. COL VT Deal, MAJ J Quan, MAJ A J ollie, MAJ J Longacre, MAJ J Shuette, MAJ T Logan, 28th Combat Support Hospital, Port-au-Prince, Haiti. P Jahrling, PhD, C Rossi, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland. Div of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, CDC.
Editorial Note: Dengue virus infection is increasing throughout the Caribbean (1). Although recent surveillance data from Haiti are not available, the documentation of illness and infections among U.S. military personnel confirms the continuing occurrence of DF in Haiti and the circulation of at least two dengue virus serotypes.

The incubation period for DF generally ranges from 2 to 7 days but may be as long as 14 days; therefore, illness may occur while U.S. military personnel are stationed in Haiti or after they return to the United States. Illness is characterized by abrupt onset

Dengue - Continued

of fever, chills, headache, eye pain, and lower back pain. Common associated symptoms include myalgia, arthralgia, nausea, vomiting, anorexia, malaise, and a blanching erythematous rash. The clinical course may be characterized by recrudescence of fever for 1-2 days after initial improvement. Laboratory findings include leukopenia and thrombocytopenia. However, a small proportion of patients may develop dengue hemorrhagic fever (DHF), which is characterized by fever, thrombocytopenia (platelet count $<100,000 / \mathrm{mm}^{3}$), and abnormal capillary permeability evidenced by hemoconcentration, hypoalbuminemia, or pleural or abdominal effusions; mild or severe hemorrhage can occur. DHF can result in circulatory instability or shock, and the risk for these complications may be increased among persons with secondary dengue virus infections.

Most dengue virus infections are self-limited and can be treated with bed rest, acetaminophen, and oral fluids. Some U.S. military personnel deployed to Haiti who also participated in Operation Restore Hope in Somalia during 1992-94 and acquired dengue infections during that operation (3) may be at increased risk for DHF.

Laboratory diagnosis of DF includes detection of serum IgM antibodies, which are usually absent in specimens collected while patients are febrile but can be present in specimens collected after fever has abated (2). Definitive proof of DF requires virus isolation from serum or a fourfold or greater rise in dengue-specific antibody titers between acute- and convalescent-phase samples. Virus can be isolated from serum obtained only while patients are febrile.

During November-December, approximately 9000 military personnel will be returning to the United States from Haiti. Nonmilitary U.S. residents also may be traveling to and from Haiti during this period. Because DF and malaria are endemic in Haiti, physicians and other health-care providers in the United States should consider these diseases in the differential diagnosis of febrile illnesses in any person who has recently been in Haiti or other tropical countries in the Americas (4).

The occurrence of DF among troops deployed to Haiti highlights the increasing impact of this disease in the Americas, the need for an effective vaccine, and the need for increased efforts to control Ae. aegypti, the mosquito vector of dengue virus. Dengue virus is now endemic in all Caribbean countries except Cuba and the Cayman Islands (1). The potential exists for introduction of dengue virus into the United States, and for secondary transmission in areas with vector mosquitoes, because of increased travel to and from regions of the Americas where dengue is endemic.

For assistance with diagnosis of dengue in persons returning from Haiti, specimens from military personnel should be sent through the state health department laboratories to the Walter Reed Army Institute of Research, Building 40, Room 2044, Attention: Major N. Kanesa-thasan, Washington, DC 20307; telephone (202) 576-2015. Specimens from civilians should be sent through state health department laboratories to CDC's Dengue Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, 2 Calle Casia, San J uan, PR 00921-3200; telephone (809) 7665181. Specimens for virus isolation should be sent on dry ice; specimens sent only for serologic testing may be shipped on cold packs.

References

1. Gubler DJ , Trent DW. Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infectious Agents and Disease 1993;2:383-93.

Dengue - Continued
2. Innis BL, Nisalak A, Nimmannitya S, et al. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and J apanese encephalitis co-circulate. Am J Trop Med Hyg 1989;40:418-27.
3. Kanesa-thasan N, Iacono-Connors L, Magill A, et al. Dengue serotypes 2 and 3 in US forces in Somalia [Letter]. Lancet 1994;343:678.
4. Rigau-Pérez J G, Gubler DJ , Vorndam AV, Clark GG. Dengue surveillance—United States, 19861992. In: CDC Surveillance Summaries (J uly). MMWR 1994;43(no. SS-2):7-19.

Current Trends

Update: Influenza Activity — United States, 1994-95 Season

In collaboration with the World Health Organization (WHO) international collaborating laboratories and state and local health departments in the United States, CDC conducts surveillance to monitor influenza activity and to determine the antigenic characteristics of circulating strains of influenza viruses. This report describes influenza viruses isolated from sporadic cases of influenza in the United States during J uly-September 1994 and summarizes influenza surveillance findings from October through mid-November 1994.

From J uly through September, influenza type A(H3N2) viruses were isolated from sporadic cases in California, Hawaii, Michigan, New York, and South Dakota; influenza type A(H1N1) was reported from Nevada and influenza type B from Texas. All of these isolates were characterized at CDC and are antigenically similar to the A/Shang-dong/09/93-like (H3N2), A/Texas/36/91-like (H1N1), and B/Panama/45/90-like influenza virus strains included in the 1994-95 influenza vaccine.

From October 2, when WHO international collaborating laboratories in the United States began seasonal influenza virus surveillance, through November 19, two of 2693 specimens tested for respiratory viruses yielded influenza virus. Influenza type A was identified by antigen detection from nasopharyngeal swab specimens collected November 2 from a patient in New Mexico and November 3 from a patient in New York. Reports from state and territorial epidemiologists and from sentinel physicians have indicated low levels of influenza-like illness nationwide.
Reported by: Participating state and territorial epidemiologists and state public health laboratory directors. World Health Organization collaborating laboratories. Sentinel Physicians Influenza Surveillance System of the American Academy of Family Physicians. WHO Collaborating Center for Surveillance, Epidemiology, and Control of Influenza, Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases, CDC.
Editorial Note: Although the time of onset of influenza epidemics can vary substantially by year, the pattern from October through mid-November 1994 was typical for influenza activity in the United States. In some recent influenza seasons (e.g., 1991-92 and 1993-94) (1,2), influenza activity began earlier than usual; however, regional activity usually does not begin until December, and influenza activity usually peaks during J anuary or February. Accordingly, the Advisory Committee on Immunization Practices recommends that the optimal time for organized vaccination campaigns for persons in high-risk groups is usually from mid-October through mid-November. Vaccine should be offered to high-risk persons up to and even after influenza activity is documented in a community (3); following vaccination, 1-2 weeks are required for the

Influenza - Continued

development of protective antibody titers. When influenza vaccine is administered after influenza type A outbreaks have begun in a community, the antiviral drugs amantadine and rimantadine can be administered to protect against influenza until vaccine-induced antibody has developed. These drugs are not effective against influenza type B. Updated recommendations for the use of these drugs will be published in MMWR during December 1994.

Worldwide virologic surveillance is conducted throughout the year to monitor antigenic changes in the circulating influenza virus strains. Through this system, antigenic changes in influenza virus strains have been detected sufficiently early to formulate influenza vaccines that frequently have contained strains similar to those that subsequently have circulated in the United States at epidemic levels. Although influenza activity is difficult to predict, it is expected that during the 1994-95 season in the United States, both type A and type B viruses will circulate.

Information about national influenza surveillance is updated weekly from October through May and is available through the CDC Voice Information System, telephone (404) 332-4555. Information about local influenza activity is available from county and state health departments.

References

1. CDC. Influenza-United States, 1989-90 and 1990-91 seasons. MMWR 1992;41(no. SS-3):35-46.
2. CDC. Update: influenza activity-United States and worldwide, 1993-94 season, and composition of the 1994-95 influenza vaccine. MMWR 1994;43:179-83.
3. ACIP. Prevention and control of influenza: part I, vaccines-recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1994;43(no. RR-9).

Current Trends

Hypothermia-Related Deaths North Carolina, November 1993-March 1994

For 1979-1991, North Carolina (1990 population: 6,628,637) ranked second in number and ninth in rate of deaths associated with hypothermia (clinically defined as an unintentional lowering of the body temperature to $\leq 95 \mathrm{~F}[\leq 35 \mathrm{C}]$) [1]). From November 1993 through March 1994, a total of 28 deaths attributed to hypothermia were reported to the Office of the Chief Medical Examiner in North Carolina. This report summarizes information about those deaths and describes specific findings for four deaths that reflect circumstances commonly associated with hypothermia.

Summary of Findings

Of the 28 hypothermia-associated deaths in North Carolina during November 1993-March 1994, 16 (57\%) occurred among men, three (11\%) among persons who were homeless, and 13 (46\%) among persons in whom alcohol abuse was mentioned on the pathology or police report. The median age of the decedents was 65.5 years (range: 32-91 years).

Specific Findings for Four Deaths

Case 1. On November 23, 1993, an 83-year-old woman with Alzheimer disease was found dead in a field. On November 20, dressed only in lightweight clothing, she had

FIGURE I. Notifiable disease reports, comparison of 4-week totals ending November 19, 1994, with historical data - United States

*The large apparent decreases in the number of reported cases of measles (total), and rubella reflect dramatic fluctuations in the historical baseline. (Ratio (log scale) for week 46 measles (total) and rubella are 0.04374 and 0.07673 respectively).
${ }^{\dagger}$ Ratio of current 4 -week total to mean of 154 -week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

TABLE I. Summary - cases of specified notifiable diseases, United States, cumulative, week ending November 19, 1994 (46th Week)

	Cum. 1994		Cum. 1994
AIDS*	66,921	Measles: imported	172
Anthrax		indigenous	690
Botulism: Foodborne	48	Plague	14
Infant	71	Poliomyelitis, Paralytic§	1
Other	7	Psittacosis	37
Brucellosis	79	Rabies, human	2
Cholera	30	Syphilis, primary \& secondary	18,552
Congenital rubella syndrome	4	Syphilis, congenital, age <1 year『	1,123
Diphtheria	1	Tetanus	33
Encephalitis, post-infectious	98	Toxic shock syndrome	161
Gonorrhea	347,697	Trichinosis	32
Haemophilus influenzae (invasive disease) ${ }^{\dagger}$	1,006	Tuberculosis	19,458
Hansen Disease	106	Tularemia	79
Leptospirosis	32	Typhoid fever	380
Lyme Disease	10,090	Typhus fever, tickbome (RMSF)	412

*Updated monthly to the Division of HIV/AIDS, National Center for Infectious Diseases; Iast update October 25, 1994.
${ }^{\dagger}$ Of 959 cases of known age, 269 (28\%) were reported among children less than 5 years of age.
§The remaining 5 suspected cases with onset in 1994 have not yet been confirmed. In 1993, 3 of 10 suspected cases were
confirmed. Two of the confirmed cases of 1993 were vaccine-associated and one was classified as imported.
ITotal reported to the Division of Sexually Transmitted Diseases and HIV Prevention, National Center for Prevention Services, through second quarter 1994.

TABLE II. Cases of selected notifiable diseases, United States, weeks ending November 19, 1994, and November 20, 1993 (46th Week)

Reporting Area	AIDS*	Aseptic Meningitis	Encephalitis		Gonomhea		Hepatitis (Viral), by type				Legionel-	Lyme Disease
			Primary	Post-infectious			A	B	NA,NB	Unspecified		
	$\begin{aligned} & \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1993 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Cum. } \\ 1994 \\ \hline \end{array}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$
UNITED STATES	66,921	7,161	589	98	347,697	353,756	20,076	10,155	3,801	372	1,408	10,090
NEW ENGLAND	2,451	274	18	4	7,497	6,873	258	270	117	15	74	2,427
M aine	71	30	5	-	83	72	24	11	-	-	5	26
N.H.	52	30	-	2	100	62	14	22	8	-	-	27
Vt.	29	35	2	-	32	22	10					13
Mass.	1,245	77	9	1	2,914	2,773	94	164	89	13	58	232
R.I.	, 225	102	2	1	416	375	24	8	20	2	11	455
Conn.	829	-	-	-	3,952	3,569	92	65	-	-	-	1,674
MID. ATLANTIC	19,665	825	51	17	38,725	41,261	1,481	1,304	398	8	235	6,307
Upstate N.Y.	1,801	398	30	3	9,285	8,864	484	353	196	4	57	3,923
N.Y. City	11,313	127	7	5	13,984	10,703	591	322	1	-	10	26
N.J.	4,424	-	-	-	4,527	5,121	248	322	170	-	38	1,193
Pa.	2,127	300	14	9	10,929	16,573	158	307	31	4	130	1,165
E.N. CENTRAL	5,255	1,360	147	22	66,679	75,433	2,008	981	274	10	415	121
Ohio	940	347	52	4	18,985	20,492	849	141	22	-	182	71
Ind.	534	180	11	1	8,079	7,674	342	169	10	-	103	14
III.	2,584	343	49	5	17,108	25,769	380	199	57	3	27	11
Mich.	895	483	31	12	16,276	15,578	280	351	182	7	74	25
Wis.	302	7	4	-	6,231	5,920	157	121	3	-	29	-
W.N. CENTRAL	1,387	399	30	8	19,817	19,514	1,040	577	88	11	89	230
Minn.	341	25	2	-	2,996	2,162	215	57	20	1	2	165
Iowa	91	111	1	1	1,379	1,431	57	24	12	10	30	15
Mo.	624	148	7	4	10,930	11,811	515	438	29		36	36
N. Dak.	22	12	4		18	-49	5			-	4	
S. Dak.	15	2	4	-	173	238	34	2	-	-	1	-
Nebr.	77	33	5	3	1,060	484	118	27	12	-	10	2
Kans.	217	68	7	-	3,261	3,339	96	29	15	-	6	12
S. ATLANTIC	15,911	1,378	136	29	97,179	88,475	1,292	2,082	579	48	321	753
Del.	230	34	1	-	1,767	1,357	17	5	1	-	26	70
Md.	2,455	227	20	4	15,743	14,284	186	376	30	16	85	315
D.C.	1,226	50	-	1	6,339	4,740	23	54	1	-	10	9
Va .	986	283	29	6	12,019	10,516	168	116	25	8	8	125
W. Va.	64	36	45	2	722	581	20	42	39	-	4	23
N.C.	1,027	206	40	1	25,143	22,380	120	257	52	-	25	76
S.C.	1,042	30	-	-	11,786	9,509	39	31	10	-	16	7
Ga.	1,905	47	1	-	2,424	4,660	28	527	180	$\stackrel{-}{-}$	99	103
Fla.	6,976	465	-	15	21,236	20,448	691	674	241	24	48	25
E.S. CENTRAL	1,761	478	35	3	41,689	40,697	569	1,079	834	2	70	40
Ky.	273	159	15	1	4,546	4,442	136	67	27	-	9	21
Tenn.	599	114	12	-	13,821	12,557	268	932	790	1	43	13
Ala.	518	155	6	1	13,347	14,486	98	80	17	1	13	6
Miss.	371	50	2	1	9,975	9,212	67	-	-	-	5	-
W.S. CENTRAL	6,509	775	47	2	41,893	40,265	2,909	1,343	541	69	40	120
Ark.	226	47	-	-	5,916	6,729	178	24	7	2	9	8
La.	1,032	32	7	-	10,745	10,536	138	153	162	1	13	2
Okla.	234	-	-	-	3,259	4,151	337	291	309	3	11	70
Tex.	5,017	696	40	2	21,973	18,849	2,256	875	63	63	7	40
M OUNTAIN	1,980	310	12	4	8,402	10,163	3,817	556	397	58	89	19
Mont.	23	8	-	-	76	70	23	22	13	-	16	-
Idaho	50	6	-	-	77	159	324	69	67	1	2	3
Wyo.	16	4	2	2	76	74	28	23	157	-	6	5
Colo.	723	118	3	-	2,809	3,368	527	89	60	15	19	-
N. Mex.	190	18	-	I	967	862	1,017	184	46	11	3	8
Ariz.	526	66	1	1	2,866	3,568	1,152	48	13	11	15	-
Utah	122	49	2	1	231	393	531	70	26	6	7	2
Nev.	330	41	4	-	1,300	1,669	215	51	15	14	21	1
PACIFIC	12,002	1,362	113	9	25,816	31,075	6,702	1,963	573	151	75	73
Wash.	820	,	-	-	2,591	3,285	315	66	66	2	8	-
Oreg.	512	1- ${ }^{-}$	${ }^{-}$	-	570	1,059	687	78	17	1	-	-
Calif.	10,475	1,216	110	8	21,324	25,618	5,448	1,781	485	145	63	73
Alaska	36	18	3	-	786	559	192	11	-	-	-	-
Hawaii	159	128		1	545	554	60	27	5	3	4	-
Guam	1	19	-	-	190	87	42	6	1	12	3	-
P.R.	1,929	32	1	3	411	450	77	339	161	11	-	-
V.I.	44	-	-		38	90	-	1	-	-	-	-
Amer. Samoa		-	-	-	31	40	7	-	-	-	-	-
C.N.M.I.	-	-	-	-	45	76	7	1	-	-	-	-

N : Not notifiable U: Unavailable
C.N.M.I.: Commonwealth of Northern Mariana Islands
*Updated monthly to the Division of HIV/AIDS, National Center for Infectious Diseases; last update October 25, 1994.

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending November 19, 1994, and November 20, 1993 (46th Week)

Reporting Area	Malaria Cum. 1994	Measles (Rubeola)					Menin- gococcal Infections Cum. 1994	Mumps		Pertussis			Rubela		
		Indigenous		Imported*		Total 1993									
		1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$			1994	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	1994	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1993 \end{aligned}$	1994	$\begin{aligned} & \text { Cum. } \\ & 1994 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1993 \end{aligned}$
UNITED STATES	933	1	690	-	172	297	2,331	28	1,243	94	3,115	5,610	-	212	174
NEW ENGLAND	76	-	14	-	14	63	118	-	19	20	349	682	-	128	2
Maine	6	-	1	-	4	1	19	-	3		18	15	-	128	1
N.H.	3	-	1	-	-	2	6	-	4	9	67	149	-	-	-
Vt .	3	-	2	-	1	31	3	-	-	-	40	91	-	-	-
Mass.	33	-	2	-	6	18	52	-	3	11	184	343	-	124	1
R.I.	9	-	4	-	3	2	-	-	2	-	6	11	-	2	-
Conn.	22	-	4	-	-	9	38	-	7	-	34	73	-	2	-
MID. ATLANTIC	187	1	173	-	22	33	235	4	103	20	578	872	-	10	59
Upstate N.Y.	49	-	13	-	3	7	83	-	31	2	218	304	-	7	17
N.Y. City	64	-	11	-	3	17	11	-	13	7	157	78	-	1	22
N.J.	46	1	144	-	12	9	53	-	6		11	80	-	2	15
Pa.	28	1	5	-	4		88	4	53	11	192	410	-	-	5
E.N. CENTRAL	96	-	58	-	44	31	371	2	214	4	380	1,408	-	11	8
Ohio	15	-	15	-	2	9	106	2	66	2	145	407	-	-	1
Ind.	14	-	-	-	1	1	68		7	2	58	140	-	-	3
III.	39	-	17	-	39	9	110	-	95		81	406	-	3	1
Mich.	26	-	23	-	2	6	53	-	42	-	46	107	-	8	2
Wis.	2	-	3	-	-	6	34	-	4	-	50	348	-	-	1
W.N. CENTRAL	43	-	126	-	44	3	169	-	63	5	195	524	-	2	1
Minn.	14	-	-	-	-	-	18	-	5	2	87	306	-	-	-
Iowa	5	-	6	-	1	-	18	-	16		19	37	-	-	-
Mo.	12	-	118	-	42	1	86	-	36	1	43	136	-	2	1
N. Dak.	1	-	-	-		-	1	-	5	-	4	5	-	-	-
S. Dak.		-	-	-	-	-	9	-	-	1	20	8	-	-	-
Nebr.	5	-	1	-	1	-	13	-	1	-	9	13	-	-	-
Kans.	6	-	1	-	-	2	24	-	-	1	13	19	-	-	-
S. ATLANTIC	209	-	59	-	8	28	400	10	184	2	287	567	-	11	6
Del.	3	-	-	-	-	-	5	-	-	-	3	9	-	-	-
Md.	99	-	2	-	2	4	40	4	62	-	74	123	-	-	2
D.C.	14	-	-	-	-	-	6	-	-	-	8	13	-	-	-
Va.	32	-	1	-	2	4	64	2	41	-	36	59	-	-	-
W. Va.		-	36	-		-	12		3	-	4	8	-	-	-
N.C.	11	-	2	-	1	-	48	-	36	-	79	151	-	-	-
S.C.	5	-	-	-	1	-	28	-	7	-	13	70	-	-	-
Ga.	23	-	3	-	-	-	69	-	8	1	26	51	-	2	-
Fla.	22	-	15	-	3	20	128	4	27	1	44	83	-	9	4
E.S. CENTRAL	31	-	28	-	-	1	138	5	26	1	122	271	-	-	1
Ky.	11	-	-	-	-	-	35	-		-	59	36	-	-	1
Tenn.	10	-	28	-	-	-	35	5	9	-	22	166	-	-	-
Ala.	9	-	-	-	-	1	68	5	10	1	34	59	-	-	-
Miss.	1	-	-	-	-	-	-	-	7	-	7	10	-	-	-
W.S. CENTRAL	42	-	11	-	8	10	294	3	232	-	184	143	-	13	17
Ark.	3	-	11	-	1	-	40		1	-	27	11	-	1	
La.	9	-	-	-	1	1	37	1	28	-	10	12	-	-	1
Okla.	7	-	-	-	-	-	32	-	23	-	26	78	-	4	1
Tex.	23	-	11	-	6	9	185	2	180	-	121	42	-	9	15
MOUNTAIN	30	-	149	-	17	6	151	1	147	31	390	402	-	6	11
Mont.	-	-	-	-	-	-	6	-	-	1	9	11	-	-	-
Idaho	2	-	1	-	-	-	17	1	10	28	77	95	-	-	2
Wyo.	1	-	-	-	-	-	7	-	2	-	-	1	-	-	-
Colo.	13	-	16	-	3	3	31	-	3		123	165	-	-	2
N. Mex.	3	-	-	-	-	-	15	N	N	1	24	39	-	1	2
Ariz.	5	-	1	-	1	2	47	,	90	1	130	51	-	-	2
Utah	4	-	131	-	2	-	18	-	24	-	24	36	-	4	4
Nev.	2	-		-	11	1	10	-	17	-	3	4	-	1	1
PACIFIC	219	-	72	-	15	122	455	3	255	11	630	741	-	31	69
Wash.	12	-	-	-	-	-	30	-	7	,	32	68	-	-	-
Oreg.	13	-	-	-	2	4	87	N	N	-	38	90	-	2	-
Calif.	176	-	56	-	9	96	329	2	226	10	537	572	-	24	40
Alaska	2	-	16	-		2	2	-	4	-	1	5	-	1	1
Hawaii	16	-	-	-	4	20	7	1	18	1	22	6	-	4	28
Guam	4	U	211	U	-	3	1	U	6	U	2	-	U	1	-
P.R.	3		13	-	-	354	15	-	2	-	1	8	-	-	-
V.I.				,	-	,			1	,		-	-	-	-
Amer. Samoa	-	U	-	U	-	7	-	U	1	U	2	2	U	-	-
C.N.M.I.	1	U	26	U	-	17	-	U	2	U	-	1	U	-	-

*For measles only, imported cases include both out-of-state and international importations.
N : Not notifiable $\quad \mathrm{U}:$ Unavailable International § Out-of-state

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending November 19, 1994, and November 20, 1993 (46th Week)

Reporting Area	Syphilis (Primary \& Secondary)		ToxicShock Syndrome	Tuberculosis		Tularemia Cum. 1994	Typhoid Fever Cum. 1994	Typhus Fever (Tick-bome) (RMSF) Cum. 1994 412	Rabies, Animal Cum. 1994
	$\begin{aligned} & \hline \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1993 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1994 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1993 \end{aligned}$				
UNITED STATES	18,552	23,509	161	19,458	19,999	79	380	412	6,675
NEW ENGLAND	195	330	4	443	458	1	21	15	1,710
Maine	4	7	1	27	25	-	-	-	-
N.H.	4	25	-	15	17	-	-	-	188
V t.	-	1	1	8	5	-	-	-	128
Mass.	83	115	2	226	246	1	17	7	667
R.I.	13	14	-	43	52	-	1	-	44
Conn.	91	168	-	124	113	-	3	8	683
MID. ATLANTIC	1,208	2,124	27	3,879	4,252	1	102	17	1,726
Upstate N.Y.	152	209	14	454	609	1	12	6	1,253
N.Y. City	522	1,044	-	2,264	2,387	-	67	1	-
N.J.	215	288	${ }^{-}$	695	687	-	17	4	248
Pa.	319	583	13	466	569	-	6	6	225
E.N. CENTRAL	2,485	3,769	31	1,877	2,060	8	71	45	55
Ohio	999	1,018	6	295	277	1	7	28	4
Ind.	230	333	2	174	202	2	7	5	13
III.	712	1,444	11	961	1,083	3	44	10	18
Mich.	258	515	12	396	415	1	6	2	12
Wis.	286	459	-	51	83	1	7	-	8
W.N. CENTRAL	1,037	1,480	24	509	443	36	1	36	188
Minn.	46	55	1	121	62	1	-	-	14
Iowa	59	61	8	54	52	-	-	1	77
Mo.	868	1,238	6	223	222	23	1	18	21
N. Dak.		- 4	1	8	7	1	-		10
S. Dak.	1	2	-	22	12	2	-	13	33
Nebr.	11	10	3	17	21	2	-	1	-
Kans.	52	110	5	64	67	7	-	3	33
S. ATLANTIC	5,374	5,875	8	3,639	4,023	2	46	195	1,791
Del.	25	90	-	40	42	-	1	-	41
Md.	275	333	-	301	342	1	13	22	481
D.C.	192	300	-	104	146	-	1	-	2
Va.	721	567	1	292	396	-	8	19	381
W. Va.	9	12	-	70	68	-	-	2	70
N.C.	1,484	1,694	1	443	483	-	-	76	155
S.C.	726	847	-	331	345	-	-	18	163
Ga.	1,259	981	1	664	677	1	2	55	339
Fla.	683	1,051	5	1,394	1,524	-	21	3	159
E.S. CENTRAL	3,489	3,651	6	1,279	1,450	1	3	43	204
Ky.	195	314	2	280	333	1	1	9	20
Tenn.	939	1,039	3	401	451	-	2	28	71
Ala.	575	761	1	392	442	-	-	2	113
Miss.	1,780	1,537	-	206	224	-	-	4	-
W.S. CENTRAL	3,939	4,970	1	2,611	2,325	17	15	47	613
Ark.	431	509	-	237	158	16	-	8	25
La.	1,533	2,294	-	138	234	-	3	-	63
Okla.	111	256	1	225	149	1	3	32	39
Tex.	1,864	1,911	-	2,011	1,784	-	9	7	486
MOUNTAIN	206	221	8	439	492	9	10	14	131
Mont.	4	1	-	9	13	3	-	4	20
Idaho	1		2	11	12		-	-	3
Wyo.	1	8	-	8	6	-	-	2	19
Colo.	110	71	4	21	72	1	3	4	15
N. Mex.	19	24	-	54	59	1	1	2	7
Ariz.	35	92	-	202	212	-	2	1	45
Utah	8	10	2	41	30	2	2	-	13
Nev.	28	15	-	93	88	2	2	1	9
PACIFIC	619	1,089	52	4,782	4,496	4	111	-	257
Wash.	30	55	3	231	234	-	4	-	-
Oreg.	21	37	-	90	-	2	5	-	12
Calif.	561	983	45	4,178	3,982	1	96	-	215
Alaska	4	8	-	59	53	1	-	-	30
Hawaii	3	6	4	224	227	-	6	-	-
Guam	10	3	-	153	65	-	1	-	-
P.R.	269	454	-	159	165	-	-	-	59
V.I.	27	39	-	-	2	-	-	-	-
Amer. Samoa	1	$\overline{7}$	-	4	4	-	1	-	-
C.N.M.I.	2	7	-	33	38	-	1	-	-

U: Unavailable

TABLE III. Deaths in 121 U.S. cities,* week ending November 19, 1994 (46th Week)

Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\&1 }{ }^{\dagger} \\ & \text { Total } \end{aligned}$	Reporting Area	All Causes, By Age (Years)						P\&I ${ }^{\dagger}$Total
	$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	≥ 65	45-64	25-44	1-24	<1			$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	≥ 65	45-64	25-44	1-24	<1	
NEW ENGLAND	673	452	137	54	12	18	45	S. ATLANTIC	1,305	834	229	161	43	38	54
Boston, Mass.	165	95	37	22	2	9	10	Atlanta, Ga.	164	108	32	19	2	3	7
Bridgeport, Conn.	39	26	7	6		-	3	Baltimore, Md.	181	90	46	33	5	7	15
Cambridge, Mass.	20	12	6	2	-	-	2	Charlotte, N.C.	121	74	19	15	8	5	7
Fall River, Mass.	32	27	4	1			1	J acksonville, Fla.	148	110	20	14	2	2	5
Hartford, Conn.	72	42	20	5	2	3		Miami, Fla.	86	55	15	13	-	3	-
Lowell, Mass.	25	20	3	1	1	-	2	Norfolk, Va.	55	37	6	6	3	3	
Lynn, Mass.	9	8	1	-				Richmond, Va.	U	U	U	U	U	U	U
New Bedford, Mass.	35	23	8	4	-		1	Savannah, Ga.	49	33	7	4	2	3	3
New Haven, Conn.	52	34	9	5	1	3	2	St. Petersburg, Fla.	57	44	3	5	2	3	3
Providence, R.I.	55	38	10	4	3		8	Tampa, Fla.	186	138	30	8	6	4	11
Somerville, Mass.	9	3	5	1				Washington, D.C.	241	130	50	43	13	5	3
Springfield, Mass.	56	39	13		3	1	5	Wilmington, Del.	17	15	1	1	-	-	-
Waterbury, Conn.	29	26	3				2								
Worcester, Mass.	75	59	11	3	-	2	9	E.S. CENTRAL Birmingham, Ala.	$\begin{aligned} & 732 \\ & 103 \end{aligned}$	471	154	51	33	23 7	44
MID. ATLANTIC	2,505	1,629	455	312	59	49	147	Chattanooga, Tenn.	56	36	12	4	3	1	1
Albany, N.Y.	40	31	6	2	1	-	6	Knoxville, Tenn.	65	41	17	5	1	1	9
Allentown, Pa.	25	19	3	3	-	-	1	Lexington, Ky.	69	48	13	3	4	1	4
Buffalo, N.Y.	68	51	13	3	1	-	28	Memphis, Tenn.	179	113	37	14	10	5	10
Camden, N.J.	32	21	4	4	1	2	3	Mobile, Ala.	76	45	21	3	6	1	2
Elizabeth, N.J .	28	18	6	3	1	-	-	Montgomery, Ala.	39	25	5	4	3	2	6
Erie, Pa.§	46	36	7	2	-	1	-	Nashville, Tenn.	145	91	35	11	3	5	9
J ersey City, N.J	47	29	10	4	2	2									
New York City, N.Y.	1,342	827	266	210	24	15	43	W.S. CENTRAL Austin Tex	1,564	988	298	189	53	36	102
Newark, N.J.	86	46	12	20	5	3	7	Austin, Tex.	69	44	11	13	4	1	7
Paterson, N.J.	31	21	3	4	1	2	2	Corpus Christi, Tex.	46	28	17	7	2	2	1
Philadelphia, Pa.	297	186	53	33	16	9	20	Dallas, Tex.	170	98	30	29	10	3	2
Pittsburgh, Pa.§ Reading, Pa.	111	77 11	20	2	3 1	8	6 2	El Paso, Tex.	159	38	10	8	10	3	2
Rochester, N.Y.	125	101	19	4	1	-	14	Ft. Worth, Tex.	93	71	12	4	3	3	1
Schenectady, N.Y.	21	16	5			-	2	Houston, Tex.	440	243	98	69	19	11	41
Scranton, Pa.§	31	27	4				2	Little Rock, Ark.	86	55	19	7	3	2	8
Syracuse, N.Y.	96	72	13	7		4	9	New Orleans, La.	133	96	21	9	3	4	
Trenton, N.J.	21	13	2	4		2	1	San Antonio, Tex.	242	163	48	21	5	5	24
Utica, N.Y.	12	9	1	2		-		Shreveport, La.	34	25	6	2	1	-	4
Yonkers, N.Y.	29	18	5	4	2	-	1	Tulsa, Okla.	111	76	18	14	1	2	12
E.N. CENTRAL	2,322	1,445	448	245	117	67	122	MOUNTAIN	945	645	181	84	17	18	82
Akron, Ohio	2,322	1,40	17	1	2	-		Albuquerque, N.M.	109	71	21	14	2	1	4
Canton, Ohio	36	27	8			1	7	Colo. Springs, Colo.	46	34	7	4	1		2
Chicago, III.	438	171	82	98	66	21	15	Denver, Colo.	148	96	29	18	$\overline{-}$	5	22
Cincinnati, Ohio	93	65	18	5	1	4	9	Las Vegas, Nev.	158	102	40	12	3	1	12
Cleveland, Ohio	170	111	31	21	4	3	1	Ogden, Utah	17	12	4	-	1	7	1
Columbus, Ohio	197	130	40	18	6	3	14	Phoenix, Ariz.	211	141	43	16	4	7	23
Dayton, Ohio	130	94	23	11	1	1	8	Pueblo, Colo.	22	19	3			,	
Detroit, Mich.	274	150	68	37	9	10	9	Salt Lake City, Utah	82	64	8	6	3	1	12
Evansville, Ind.	43	36	6	1		-		Tucson, Ariz.	152	106	26	14	3	3	6
Fort Wayne, Ind.	56	41	13	1	1	-	4	PACIFIC	1,825	1,180	361	192	51	20	128
Gary, Ind.	21	13	5	2	1	4	1	Berkeley, Calif.	12	11		1			1
Grand Rapids, Mich.	190	47 132	27	24	2	4	12	Fresno, Calif.	106	73	22	6	4	1	8
Madison, Wis.	58	40	11	-	1	1	6	Glendale, Calif.	24	19	5		-	-	1
Milwaukee, Wis.	137	91	30	5	2	9	12	Long Beach, Calif.	88	48	19	10	1	1	13
Peoria, III.	46	30	8	2	5	1	2	Los Angeles, Calif.	497	280	112	71	24	-	15
Rockford, III.	58	39	11	3	4	1	6	Pasadena, Calif.	34	18	5	4	4	3	4
South Bend, Ind.	54	42	9	3		2		Portland, Oreg.	138	101	22	10	2	3	4
Toledo, Ohio	125	91	20	6	6	2	9	Sacramento, Calif.	U	U	U	U	U	U	U
Youngstown, Ohio	73	55	15	1	-	2	2	San Diego, Calif.	141	96	21	15	6	3	18
W.N. CENTRAL	744	518	129	46	19	21	25	San Francisco, Calif	149	86	30	21	-	1	18
Des Moines, lowa	U	U	U	U	U	U	U	San J ose, Calif.	210	142	45	16	2	5	21
Duluth, Minn.	19	14	4	1	-	-	1	Santa Cruz, Calif.	36	30	5	1	-	-	2
Kansas City, Kans.	32	24	6	2	-	-	-	Seattle, Wash.	172	111	31	24	4	2	11
Kansas City, Mo.	102	67	10	8	4	2	4	Spokane, Wash.	46	35	9	2	-	-	-
Lincoln, Nebr.	46	34	7	5	-	-	1	Tacoma, Wash.	106	72	22	8	3	1	6
Minneapolis, Minn.	195	138	37	11	4	5	8	TOTAL	12,615 ${ }^{\text {a }}$	8,162	2,392	1,334	404	290	749
Omaha, Nebr.	83	61	16	2	1	3	6								
St. Louis, Mo.	149	100	27	9	8	5	-								
St. Paul, Minn.	66	44	11	5	1	5	3								
Wichita, Kans.	52	36	11	3	1	1	2								

*Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
${ }^{\dagger}$ Pneumonia and influenza.
§Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week. Complete
counts will be available in 4 to 6 weeks.
${ }^{1}$ Total includes unknown ages.
U: Unavailable.

Hypothermia-Related Deaths - Continued
wandered away from a nearby nursing home. The average low temperature for the 3 days she was missing was $34 \mathrm{~F}(1.1 \mathrm{C})$. The autopsy report listed hypothermia as the cause of death.

Case 2. On December 12, 1993, a fully clothed 58 -year-old man was found dead in a grassy area behind a store. He had a history of chronic alcohol abuse. At autopsy, his blood alcohol concentration (BAC) was $0.26 \mathrm{~g} / \mathrm{dL}$. The average temperature the day the decedent was found was 32 F (0 C). Death was attributed to a combination of hypothermia and ethanol intoxication (North Carolina state law defines legal intoxication as a BAC $>0.08 \mathrm{~g} / \mathrm{dL}$). The decedent's only known residence was a shelter for the homeless.

Case 3. On J anuary 22, 1994, a 32-year-old man was found unconscious in his vehicle, which had minimal damage from an apparent single-car collision on an ice-covered dirt road. When admitted to the hospital, his core body temperature was 92 F (33.3 C), and his BAC was $0.56 \mathrm{~g} / \mathrm{dL}$. He died 2 days later; death was attributed to aspiration pneumonia with hypothermia listed as a contributing cause. The low temperature the day he was found was $14 \mathrm{~F}(-10 \mathrm{C})$.

Case 4. On February 2, 1994, a 55 -year-old man was found unclothed in his unheated home. When admitted to the hospital, his core body temperature was 80 F (26.7 C), and his BAC was $0.11 \mathrm{~g} / \mathrm{dL}$. He died within 24 hours; his death was attributed to complications resulting from hypothermia. The low temperature the day he was found was 26 F (-3.3 C).
Reported by: JD Butts, MD, Office of the Chief Medical Examiner, Div of Postmortem Medicolegal Examination, North Carolina Dept of Environment, Health, and Natural Resources. Div of Environmental Hazards and Health Effects, National Center for Environmental Health, CDC.
Editorial Note: From 1979 (the earliest year for which on-line data are available) through 1991, an annual average of 770 persons died from hypothermia* in the United States (range: 586 in 1991 to 1021 in 1983) (Figure 1); the age-adjusted annual death rate for hypothemia during this period was 0.2 deaths per million population. Most of these deaths occurred among males (67\%) and whites (61\%). Sex- and race-specific annual death rates were higher for black males than for white males (13.7 versus 3.2 deaths per million) and for black females than white females (4.1 versus 0.1 deaths per million). Approximately 50% of all hypothermia-related deaths occurred among persons aged >64 years. These differences in risks for hypothermia-associated death may reflect differences in socioeconomic status, nutritional status, condition of clothing, and access to adequate shelter. The risk for hypothermia is increased among the elderly in mildly cool environments (i.e., 65 F [18 C]) because of an impaired shivering mechanism, lower levels of protective fat, limited mobility, and lower metabolic rate (2).

From 1979 through 1991, the highest total number of deaths from hypothermia occurred in Illinois (633); the age-adjusted death rate was highest in Alaska (29 deaths per million). States in the highest quartiles for both number of deaths and hypothermia death rates included those characterized by severe winter weather (e.g., Illinois, New York, and Pennsylvania) as well as those having milder climates (e.g., North Carolina, South Carolina, and Virginia).

[^0]FIGURE 1. Number of deaths from hypothermia* - United States, 1979-1991

* International Classification of Diseases, Ninth Revision, codes E901.0, E901.8, and E901.9.

The onset of hypothermia is insidious; early manifestations include shivering, numbness, fatigue, poor coordination, slurred speech, impaired mentation, blueness or puffiness of the skin, and irrationality (3). Risk factors associated with hypothermia are consumption of alcoholic beverages, using neuroleptic medications, hypothyroidism, mental illness, starvation, poverty, and any immobilizing illnesses (2).

Early recognition and prompt treatment of hypothermia can prevent morbidity and death. Most hypothermia deaths can be prevented through measures that include wearing layered, insulated clothing (particularly head gear, because 30\% of body heat loss occurs from the head), maintaining adequate fluid and caloric intake, and having adequate heated shelter. Targeting prevention efforts to groups at elevated risk during cold weather and provision of adequate shelter may reduce the number of hypothermia-related deaths.

References

1. Kilbourne EM. Cold environments. In: Gregg MB, ed. The public health consequences of disasters. Atlanta: US Department of Health and Human Services, Public Health Service, CDC, 1989:63-8.
2. Berkow R, ed. The Merck manual of diagnosis and therapy. 16th ed. Rahway, New J ersey: Merck and Company, 1992.
3. CDC. Hypothermia—United States. MMWR 1983;32:46-8.

International Notes

Progress Toward Poliomyelitis Eradication People's Republic of China, 1990-1994

In 1988, the Western Pacific Region of the World Health Organization (WHO) adopted a resolution to eradicate poliomyelitis from the region by the end of 1995. Since then, the People's Republic of China (1993 population: 1.2 billion) has made substantial progress toward the eradication of polio by initiating supplementary vaccination activities with oral poliovirus vaccine (OPV) in 1990. This report updates these efforts and describes the impact of China's first National Immunization Days (NIDs)* during 1993-1994 (1).

National Immunization Days

During the first NIDs on December 5 and 6, 1993, and J anuary 5 and 6, 1994, the numbers of children aged $0-47$ months vaccinated in all 30 provinces in China were 82 million and 83 million, respectively. NIDs specifically targeted children with no previous history of OPV receipt. As a result, 31% of children aged <1 year, 6% of children aged 1 year, 4% of children aged 2 years, and 2% of children aged 3 years who were vaccinated during NIDs had not previously received OPV.

During September-October 1994, two rounds of additional supplemental vaccinations targeting all children aged <4 years were conducted in seven high-risk provinces in southern and western China where type 1 wild poliovirus was detected in 1993 (Fujian, Guangdong, Guizhou, Hainan, Qinghai, and Xinjiang) or where continued transmission was suspected (Yunnan). Provincewide vaccination rounds were conducted in Fujian, Guangdong, and Hainan, and in selected counties in the remaining provinces. However, of eight counties in Guizhou with a wild poliovirus isolated in 1993, five were not included in the supplemental vaccination rounds because of a shortage of funds.

Surveillance for Polio

Eradication of disease requires a surveillance system that can detect a single case. China and many other polio-endemic countries have developed a system in which any case of acute flaccid paralysis (AFP) in a person aged <15 years is reported as a suspected case of polio. Effective AFP surveillance can detect an annual incidence of at least one case of AFP per 100,000 persons aged <15 years (2). Two stool specimens are collected from each suspected case at an interval of 24-48 hours to determine the presence of poliovirus; however, the standard WHO case definition ${ }^{\dagger}$ permits an AFP case to be confirmed as polio if it meets any of four criteria, including the isolation of poliovirus from a stool specimen.

Following a nationwide outbreak during 1989-1990, reported cases of confirmed polio ${ }^{\dagger}$ reached a historic low of 653 in 1993 (Figure 1). Of 1818 persons reported with

[^1]
Poliomyelitis - Continued

AFP in 1993, 64% had at least one stool specimen collected; wild polioviruses were isolated from 60 persons in five southern provinces (Fujian, Guangdong, one county in Hunan province bordering Guangdong, Hainan, and Guizhou) and two western provinces (Qinghai and Xinjiang). Among the 56 persons for whom age was known, 42 (75%) were children aged 0-23 months and 54 (96%) were children aged <4 years; among the 52 persons for whom vaccination status was known, 37 (71\%) had received either no doses or one previous dose of OPV.

During J anuary-October 1994, a provisional total of 114 cases of confirmed polio ${ }^{\dagger}$ were reported; of 1234 persons reported with AFP, 72% had at least one stool specimen collected. During this period, one wild type 1 poliovirus was found in a child aged 1 year from Kashgar prefecture in Xinjiang autonomous region (province), with onset of paralysis on February 20, 1994.

The rate of reported AFP patients per 100,000 children aged <15 years increased from 0.3 in 1993 to 0.8 during J anuary-September 1994. However, in 11 of 30 prov-

[^2]FIGURE 1. Reported cases of poliomyelitis,* supplemental doses of oral poliovirus vaccine (OPV) administered, and cases of laboratory confirmed wild poliovirus infection - People's Republic of China, 1989-1994†

* A confirmed cases of polio is defined as acute flaccid paralysis (AFP) and at least one of the following: 1) laboratory-confirmed wild poliovirus infection, 2) residual paralysis at 60 days, 3) death, or 4) no follow-up investigation at 60 days. The reports from China are from the national AFP reporting system.
† Provisional data through October 12, 1994.

Poliomyelitis - Continued

inces, the rate of reported AFP cases per 100,000 children aged <15 years was <0.5, below the reference rate of ≥ 1.0 per 100,000 children aged <15 years used to define a sensitive AFP surveillance system. In addition, the percentage of reported AFP patients with at least one stool specimen collected increased from 64\% in 1993 to 72% in 1994. In 1994, 55\% of AFP patients had one stool specimen collected within 0-14 days of onset of paralysis, and 44% had two stool specimens.

During J anuary-October 1994, 23 contiguous provinces in China with a total popuIation of 982 million persons reported no wild polioviruses. During this period, stool specimens from 2039 AFP patients were collected and tested for poliovirus.
Reported by: B Yang, MD, H Li, MD, Div of Expanded Program on Immunization; Z Dai, MD, Z Wang, MD, Dept of Health and Epidemic Prevention, Ministry of Health; K Wang, MD, L Zhang, MD, R Zhang, MD, J Zhang, MD, T J iang, X Zhang, MD, Chinese Academy of Preventive Medicine, Beijing, People's Republic of China. Expanded Program on Immunization Unit, Western Pacific Regional Office, World Health Organization, Manila, Philippines. Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases; Polio Eradication Activity, National Immunization Program, CDC.
Editorial Note: The findings in this report suggest that the NIDs in China during 19931994 were highly effective in reducing circulating wild poliovirus to low levels in China. Before the NIDs, wild poliovirus was documented in five southern provinces and two western provinces. Following the NIDs, wild poliovirus has been detected in only one prefecture in the remote western part of China. The decline in reported cases of polio and in the number of cases with wild poliovirus has occurred despite improvement in the sensitivity of surveillance. Collaborative efforts involving Rotary International, United Nations Children's Fund (UNICEF), and other private organizations and government agencies have been integral to the polio-eradication strategies in China.

Continued progress toward achieving polio eradication in China will require at least five strategies: 1) improving reporting of AFP patients to achieve a rate of ≥ 1.0 per 100,000 children aged <15 years; 2) increasing to 80% in all provinces the percentage of AFP patients with two stool specimens within 0-14 days of onset of paralysis; 3) intensifying surveillance and supplemental vaccination in areas that might have circulating wild poliovirus (i.e., Guizhou province and Kashgar prefecture); 4) using a more specific surveillance case definition based on virologic confirmation of AFP cases (a strategy already being implemented in China); and 5) preventing reimportation of wild poliovirus into China from other neighboring polio-endemic countries. The second annual NIDs are scheduled for December 5 and 6, 1994, and J anuary 5 and 6, 1995.

The successful eradication of wild poliovirus in the Americas and the experience in China suggest that a rapid reduction of wild poliovirus circulation can occur in virtually any geographic area if appropriate strategies and sufficient efforts are applied (3). The progress toward polio eradication in China indicates that the goal of eradicating wild poliovirus from the Western Pacific Region can be achieved.

References

1. CDC. National Poliomyelitis Immunization Days-People's Republic of China, 1993. MMWR 1993;42:837-9.
2. Hull HF, Ward NA, Hull BP, Milstien J B, de Quadros C. Paralytic poliomyelitis: seasoned strategies, disappearing disease. Lancet 1994;343:1331-7.
3. CDC. Certification of poliomyelitis eradication-the Americas, 1994. MMWR 1994;43:720-2.

The Morbidity and Mortality Weekly Report (MMWR)Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available on a paid subscription basis from the Superintendent of Documents, U.S. Govemment Printing Office, Washington, DC 20402; telephone (202) 783-3238.

The data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday. Inquiries about the MMWR Series, including material to be considered for publication, should be directed to: Editor, MMWR Series, Mailstop C-08, Centers for Disease Control and Prevention, Atlanta, GA 30333; telephone (404) 332-4555.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without special permission; citation as to source, however, is appreciated.

Director, Centers for Disease Control and Prevention David Satcher, M.D., Ph.D.
Deputy Director, Centers for Disease Control and Prevention
Claire V. Broome, M.D.
Director, Epidemiology Program Office
Stephen B. Thacker, M.D., M.Sc.
Editor, MMWR Series
Richard A. Goodman, M.D., M.P.H.
Managing Editor, MMWR (weekly)
Karen L. Foster, M.A.
Writers-Editors, MMWR (weekly)
David C. Johnson
Patricia A. McGee
Darlene D. Rumph-Person
Caran R. Wilbanks
TU.S. Govemment Printing Office: 1995-533-178/05040 Region IV

[^0]: *Data obtained from the Compressed Mortality File maintained by CDC. Hypothermia was defined as the Intemational Classification of Diseases, Ninth Revision, codes E901.0, E901.8, and E901.9 and excludes manmade cold (E901.1).

[^1]: *Mass campaigns over a short period (days to weeks) in which two doses of OPV are administered to all children in the target age group, regardless of prior vaccination history, with an interval of 4-6 weeks between doses.
 ${ }^{\dagger}$ A confirmed case of polio is defined as AFP and at least one of the following: 1) laboratoryconfirmed wild poliovirus infection, 2) residual paralysis at 60 days, 3) death, or 4) no follow-up investigation at 60 days. The data reported from China are from the national AFP reporting system (provisional data through October 12, 1994).

[^2]: ${ }^{\dagger}$ A confirmed case of polio is defined as AFP and at least one of the following: 1) laboratoryconfirmed wild poliovirus infection, 2) residual paralysis at 60 days, 3) death, or 4) no follow-up investigation at 60 days. The data reported from China are from the national AFP reporting system (provisional data through October 12, 1994).

